

Typical Features

- ◆Wide input voltage range 4:1
- High efficiency up to 90%
- ◆Low no-load power consumption
- ◆Operating Temperature: -40°C to +105°C
- High isolation voltage, input-output 1500VDC, input-case 1500VDC
- ◆ Protection: Input under voltage, output over voltage, short circuit, over current, over temp
- ◆ Standard 1/4 brick

ZCD150-48S48 high efficiency 1/4 brick dc-dc converter, rated input voltage 24V/48VDC, output 48V/150W, no minimum load, ultra wide input 18-75VDC,regulated single output, high isolation insulation voltage, allowing operating temperature up to 105 °C, with input under-voltage protection, output over-current protection, over-voltage protection, over-temperature protection, short-circuit protection, remote control and remote compensation, output voltage regulation and other functions.

Typical Product List							
Part no	Input voltage range (VDC)	Output power (W)	Output voltage (VDC)	Output current (A)	Ripple & Noise (mV)	Full load efficiency(%) Min/Typ.	Note
ZCD150-48S48C	18-75	150	48	3.15	480	88/90	Standard positive logic
ZCD150-48S48N							Standard negative logic
ZCD150-48S48C-H ZCD150-48S48N-H							Heatsink positive logic
							Heatsink negative logic

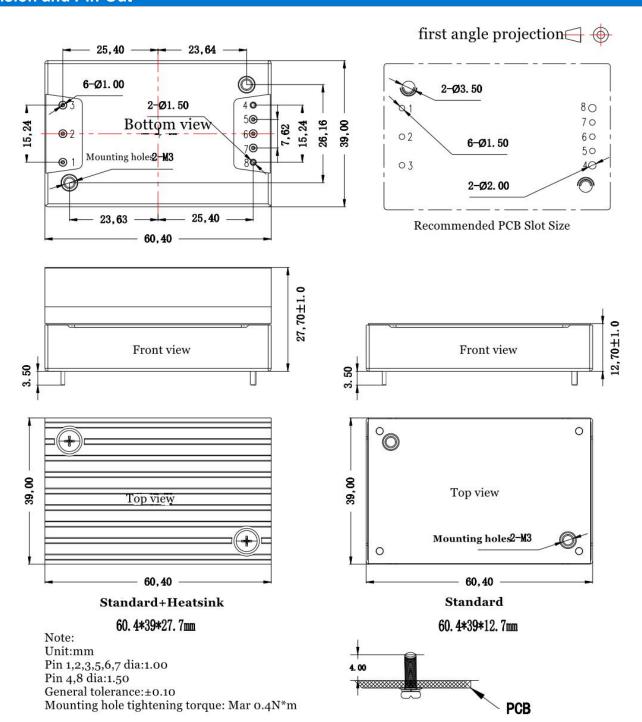
Input Specification					
Item	Operating conditions	Operating conditions Min.		Max.	Unit
Max input current	18V input voltage, full load output			10	Α
No load input current	Rated input voltage			20	mA
Input surge voltage (1sec. max.)	Inputs above this range may cause permanent damage	-0.7		50	
Start up voltage				18	VDC
Input under voltage protection	No-load test, full-load test will have overcurrent protection in advance			17	VDC
	Positive logic: CNT is suspended or connected to 3.5-15V to turn on, connected to 0-1.2V to turn off				
Control Pin(CNT)	Negative logic: CNT is suspended or connected to 3.5-15V to turn off, connected to 0-1.2V to turn on				

Output Specification					
Item	Working conditions	Min.	Тур.	Max.	Unit
Output Voltage Accuracy	Nominal input voltage, 0%-100% load		±0.5	±1	%

Line Regulation	Full load, input voltage from low to high		±0.2	±0.5	
Load Regulation	Nominal input voltage, 10%-100% load		±0.2	±0.5	
Output voltage setting accuracy	Full input voltage range, 0%-100% load		±1.0	±2.0	
Transient recovery time	259/ load stap shangs (stap rate 1A/50uS)		200	250	uS
Transient Response Deviation	25% load step change (step rate 1A/50uS)	-5		5	%
Temperature Drift Coefficient	Full load	-0.02		+0.02	%/℃
Ripple & Noise	20M bandwidth, external capacitor above 220uF		300	480	mVp-p
Output voltage adjustment (TRIM)		-20		+10	%
Output voltage remote				105	%
compensation (Sense)					
Over temp protection	Maximum temperature of product metal substrate surface	105	115	125	°C
Output overvoltage protection		125		150	%
Output overcurrent protection		3.3		5	Α
Output short circuit protection		H	liccup, conti	nuous, self-re	ecovery

General Specification						
Item	Operating of	conditions	Min.	Тур.	Max.	Unit
	I/P-O/P	Test 1min, leakage current < 3mA	1500			VDC
Isolation Voltage	I/P-Case	Test 1min, leakage current < 3mA	1500			VDC
	O/P-Case	Test 1min, leakage current < 3mA	500			VDC
Insulation resistance	I/P-O/P	Insulation voltage 500VDC	100			ΜΩ
Switching frequency				250		KHz
MTBF			150			K hours

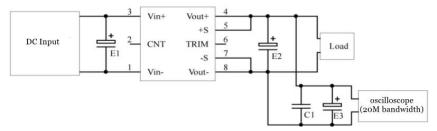
Unit				
$^{\circ}\!\mathbb{C}$				
%RH				
$^{\circ}\!\mathbb{C}$				
EN60068-2-1				
EN60068-2-2				
EN60068-2-30				
IEC/EN 61373 Body 1 Class B				


EMC Characteristics(EN50155)					
	CE	EN50121-3-2	150kHz-500kHz 79dBuV		
EMI	CE	EN55016-2-1	500kHz-30MHz 73dBuV		
EIVII	RE	EN50121-3-2	30MHz-230MHz 40dBuV/m at 10m		
KE	NE .	EN55016-2-1	230MHz-1GHz 47dBuV/m at 10m		
	ESD	EN50121-3-2	Contact ±6KV/Air ±8KV	perf. Criteria A	
	RS	EN50121-3-2	10V/m	perf. Criteria A	
EMS	EFT	EN50121-3-2	±2kV 5/50ns 5kHz	perf. Criteria A	
	Surge	EN50121-3-2	line to line \pm 1KV (42 Ω , 0.5 μ F)	perf. Criteria A	
	CE	EN50121-3-2	0.15MHz-80MHz 10 Vr.m.s	perf. Criteria A	

Physical Characteristics					
Case Materials	Asse Materials Metal bottom shell + black flame retardant material shell (UL94 V-0)				
Heat sink	imension 60.4*39.0*15mm, weight 52g, aluminum alloy, anodized black				
Cooling method H	onduction cooling or forced air cooling				
Product Weight	Standard 70g, with heatsink 125g				

Dimension and Pin-Out

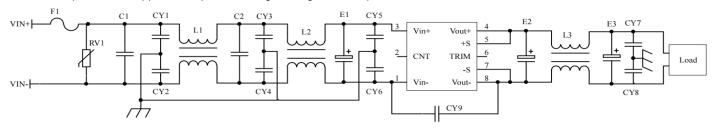
		1	2	3	4	5	6	7	8
F	Pin-out	Vin+	CNT	Vin-	Vout-	-S	TRIM	+S	Vout+



Product Characteristic Curve Temperature Derating Curve Load Efficiency Curve 91 Transfer Efficiency Output Power W 120 90 60 30 0 $-40 - 30 - 20 - 10 \quad 0 \quad 10 \quad 20 \quad 30 \quad 40 \quad 50 \quad 60 \quad 70 \quad 80 \quad 90 \quad 100$ 10 20 30 40 50 60 90 100 Board Temperature®C Output Load Percentage %

Note:

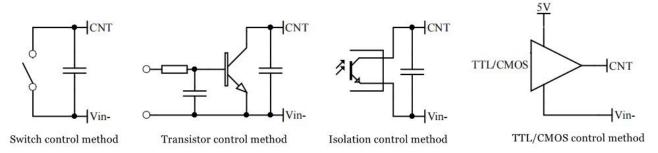
- 1. Both the temperature derating curve and the efficiency curve are tested with typical values;
- 2. The temperature derating curve is tested according to our laboratory test conditions. If the actual environmental conditions used by customers are inconsistent, it is necessary to ensure that the temperature of the aluminum casing of the product does not exceed 105 °C, and it can be used within any rated load range.


All DC/DC converters of this series are tested according to the test circuit recommended in the following figure before leaving the factory.

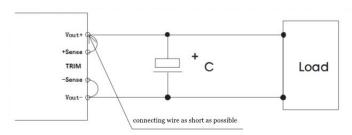
Capacitor value Output voltage	El (µF)	E2 (µF)	C1(µF)	E3 (µF)	
3.3VDC		1000			
5VDC		680			
12VDC	100				
		220	1	10	
48VDC					
,	68	68			
110VDC	OO	00			

1. Recommended application circuit

If customer does not use the circuit recommended by our company, please be sure to connect an electrolytic capacitor of at least 100 µF in parallel at the input end to suppress the possible surge voltage at the input end.



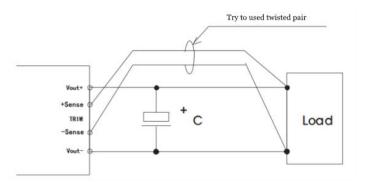
F1	T15A/250V fusing					
RV1	14D 100V Varistor					
C1,C2	105/250V Polyester Film Capacitor					
CY1,CY2,CY3,CY4,CY5,CY6 472/250Vac safety Y2 capacitor						
CY7,CY8 103/2KV Ceramic Capacitor						
CY9 471/250Vac safety Y1 capacitor						
E1 100μF/100V Electrolytic Capacitor						
E2, E3	220μf/63V Electrolytic Capacitor					
L1,L2	inductance is greater than 10mH, and the overcurrent 10A temperature rise is less than 25 $^\circ\!\mathrm{C}$					
L3	inductance is greater than 1mH, and the overcurrent 4A temperature rise is less than 25 °C					



2. Remote control terminal (CNT) control method application recommendation

3. Sense usage and precautions

(1) Without far-end compensation:



Precautions:

- 1. Do not use remote compensation, make sure Vout+ and Sense+, Vout- and Sense- are short-circuited;
- 2. The connection between Vout+ and Sense+, Vout- and Sense- should be as short as possible and close to the pins, otherwise the module may become unstable.

(2) Using remote

compensation

Precautions:

- 1. When the long-end compensation lead is used, the output voltage may be unstable;
- 2. If remote compensation is used, please use twisted pair or shielded wire, and keep the lead wire as short as possible;
- 3. Please use wide PCB leads or thick wires between the power module and the load, and keep the line voltage drop below 0.3V to ensure that the power output voltage remains within the specified range;
- 4. The impedance of the leads may cause the output voltage to oscillate or have larger ripples. Please verify it before use.

4. Use of TRIM and calculation of TRIM resistance

The relationship between output change voltage $\triangle U$ and resistance is as follows:

Voltage up regulation: add resistor Rup between Trim and output negative

Voltage Down: Add resistor Rdown between Trim and output positive

Rup=97.5/ΔU-5.1 (KΩ)

Rdown=39* (48-2.5- \triangle U) / \triangle U -5.1 (K Ω)

5. This product does not support the use of direct parallel connection to increase the power. If you need to use it in parallel, please consult our technical staff.

Others

- 1 The warranty period of this product is two years. During the normal damage, it will be repaired free of charge. Damages caused by errors in the use method or manufacturing technology, a paid service is provided.
- 2 Our company can provide product customization and matching filter modules. For details, please contact our technical staff directly.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821

E-mail: sales@aipu-elec.com Website: www.aipupower.com